第374页(1 / 2)

天才基本法 长洱 1051 字 8个月前

“你猜?”

    “爸爸你这是什么回答!”

    “你再猜”

    林朝夕:“……”

    “这都猜不中,你怎么做天才?”

    “我怎么猜嘛!”

    “来来。”老林做了个手势,挺起胸膛说,“换你来问我那个问题。”

    林朝夕愣了,而后说:“老林,你是天才吗”

    在木桌对面,老林笑了起来。

    “是啊。”

    他这么说。

    如果裴之的电话能够接通,林朝夕大概也会打电话问一问裴哥这个问题。

    虽然裴之低调内敛,但如果她问,裴之的答案大概也会和老林一样平静自然。

    ——是啊。

    所以她的问题在于不够自信

    林朝夕说不上来。

    既然说不上来,就当作是个小插曲,林朝夕看着老林的案板,问:“你的工作进度怎么样?”

    “所有进展背后都是思想的革新,你看贝叶斯提出先验概率,认为概率是主观是、不断变化的参数,改变了频率学派原有概率客观的看法。”老林把草稿纸翻到背面,随后画了两个图案,标明定点,“你看啊,这是两个图,我们怎么判定两图是否同构?”

    林朝夕:“它们有相同数目的顶点,相同数目的边,它们的点与点、边与边之间一一对应,并保持点和边之间的关联关系不变。”

    “背挺熟。”老林笑了下,“根据图同构的定义,g与g’同构的充要条是他们有相同的关联矩阵。”

    “嗯。”林朝夕认真听了下去。

    “我曾经在序列法上走过弯路,但它让我在如何判定两图同构上有了新的想法。”

    “你看啊,根据定义1,如果图g中n个点以及连接这n个点之间的边是连通的,那么这个图称为图g的n点的连通子图,记g(vn);根据定义2……”

    老林边说,边手上不停地开始写了起来。

    林朝夕一开始还能听懂他所阐述的定义部分,但到老林开始证g1g2相同关联矩阵,她就听得困难了。

    她有时皱眉,有时又很想让老林讲慢点,但老林没有像往常一样关注她的反应,换上通俗易懂的解释,停下来教她。

    这次老林从一开始就沉浸在他的数学世界里,他时而陷入长时间深思,时而又开始不间断地平静叙述。

    他像是黑暗舞台上的演员,她是台下唯一的观众。

    就算她闭着眼睛,都能想象老林内心手舞足蹈、兴高采烈,陷入莫大愉悦的状态。

    无需交流不用赞叹。

    她坐在这里,听着就很好。

    “所以,我现在要解决的部分,就是更好地在在求s(n)中减少同构判定的工作量。”老林眼睛发亮,用自信的语气做总结。

    过了一会儿,林朝夕才点了点头。