第424页(1 / 2)

万能数据 鸿尘逍遥 1121 字 8个月前

仿佛不知疲倦般,程诺从尾到头的逐页翻看。

    ……

    时间,已经来到凌晨三点。

    程诺放下手中的一页草稿纸,扭了扭脖子,一抬头,发现对面的方教授已经趴在桌子上睡着。

    程诺淡淡笑了笑,在办公室内一旁的柜子中找了一张毛毯给方教授盖上,然后,便是继续的拿着写满公式的纸张继续埋头搜寻着错误点。

    时间,一分一秒的流逝。

    程诺目光一行行扫视。

    突然,他的目光紧锁在一行算式上。

    【……在p≥11的条件下,设椭圆曲线是semi-stable的,便有ord(L(E,1)/c)=ord(Sha(E),GL2为……】

    这里,这里……为什么利用GL2的部分技术性证明条件去的得出下一部分证明工作的关键性条件。

    不对,不应该是这样!

    GL2公式的求解完全没必要,如果想要从逻辑上得到Kolyvagin conjecture的话,应该用……

    一瞬间,程诺灵光迸裂!

    第三百三十六章 你怎么知道的?

    如果CL2公式的求解并非必要条件的话,那么,后续的推导过程,未尝不能做进一步的优化……

    灵感这玩意儿,就像爱情一样,说来就来!

    无数的想法在程诺的脑海里碰撞,闪现。

    而他竭力想做的,就是努力抓住那一闪而逝的灵光。

    Eisenstein series理论?对,就是这个东西!

    程诺脑海里突然冒出这个词汇,然后他整个人便因为激动而身躯有些微微颤抖。

    什么是全纯维数1中的Eisenstein级数关于非全纯情况?简单来讲,它其实是一个特别的模形带着无穷级数可以直接写入的扩展,最初的定义是一个模群。

    一般来讲,放任τ做一个复数严格肯定虚部。定义全纯Eisenstein级数G2k(τ)重量2k,在哪里k≥2是一个整数,是由以下系列组成:

    G2k(a)=∑1/(m+na)^2k

    本系列绝对收敛的全纯函数τ在.。上半平面下面给出的Fourier展开式表明,它扩展到了一个全纯函数,a=i∞.

    听起来挺复杂的,事实是……这个东西确实异常晦涩难懂。

    程诺也是在一本讨论“全纯维数1中的Eisenstein级数关于非全纯情况”中书籍中,才系统而又全面的了解到关于这方面的知识。

    当时恰巧这个Eisenstein series理论和弱BSD猜想的证明工作看似存在一些擦边的关系,不过在前人数学家关于BSD猜想的研究中,并未有人提过这两者到底存在何种关系。

    不过本着有备无患的心态,程诺还是把这个知识点记到了脑子里。

    没想到,竟然还真有能用到的时候。

    有了灵感,程诺的思维立刻发散开来。