其实ABC猜想的内容和哥德巴赫猜想一样,普通人理解起来并不困难:
ABC猜想针对的是满足两个简单条件的正整数组(A,B,C)。其中第一个条件是A和B互素,第二个条件是A+B=C。
显然,满足这种条件的正整数组——比如(3,8,11)、(16,17,33)……——有无穷多个。为了引出ABC猜想,以(3,8,11)为例,做一个“三步走”的简单计算:
①将A、B、C乘起来(结果是3×8×11=264);
②对乘积进行素数分解(结果是264=23×3×11);
③将素数分解中所有不同的素数乘起来(结果是2×3×11=66)。
现在,将A、B、C三个数字中较大的那个(即C)与步骤3的结果比较一下,便会发现后者大于前者。如果随便找一些其它例子,也很可能发现同样的结果。
但这并不是一个规律,存在的反例数不胜数,如(3,125,128)等,但将③的结果加上一个大于1的幂,那存在反例的数目便会由无限变得有限。
简单来说,ABC猜想是一个允许存在反例的猜想。
因此,那种使用超算寻找反例证明猜想的办法,在这个难题上根本就不适用。
而看完题目后,程诺拿出一张草稿纸,在上面写写画画一阵。
半小时后,只能颓然一叹,“难啊!”
果然,这种世界级猜想,不是啥妖艳jian货就能上的。
这个猜想,果真是很有料!
没有头绪,没有任何头绪。
程诺没有看书中后面关于几位数学大佬对这个猜想的分析,他单独尝试了一波,却发现全线溃败。
他根本找不到任何的突破口,去攻克这个猜想。
难受啊!
第三百八十三章 程诺是谁?
难受到程诺直接将书合上。
目前来说,解决ABC猜想的难度还太高,程诺没那实力。
只能再积累一段时间后,再看看有没有机会,去成功攀越这座数学界的高峰。
“唉!”程诺叹口气,将这本《ABC猜想的发展与近况》放到一边。
抬起手腕,程诺瞥了一眼时间。
已经快十二点了啊!
快乐的时光总是短暂的,程诺没想到一个上午的时间就在阅读中匆匆过去。
他敲了敲桌子,坐在对面的察里同学疑惑抬头。