好在伯恩教授也很快结束了这番无意义的吹捧,继续神色庄重地说道,“我们本课题的目的,就是在结合程诺定理的基础上,推导出实用于代数簇的同调定理,进而通过同调性定理……”
伯恩教授讲话方式似乎很像华国式领导,明明就是三言两语,言简意赅的东西,被伯恩教授添添加加的说了接近小半个小时。
幸好这是语音会议,程诺还能走走神。至于现在就在伯恩教授面前的米勒和哈奇,恐怕很难受吧。
“我先说这些。接下来,我们各抒己见,先把这个课题的整体框架搭起来吧。”伯恩教授终于结束了他的絮絮叨叨。
气氛再次陷入沉默。
米勒教授打破这种尴尬的气氛,“汤姆,要不你说几句吧?”
“啊,我?”程诺愣了一下,他刚才以为是米勒要先说呢?搞半天是想让他说。
他脑海中理了理思路,“那我就说一下我的观点吧。”
“我们都知道,同调是拓扑空间范畴上的一个正变函子,也就是说他不改变箭头的方向。同时满足包括excision lemma在内的一系列公理。在一个链复形上拥有降次运算,比如说边界运算:dn:Cn→Cn-1。进行两次的边界运算后,便会得到0:dn-1*dn:Cn→Cn-2=0.”
“……设X是Fq上的d维光滑射影簇,约定E=X-Fq,在射影簇X上,我们可以定义Fx,F^2x,F^3x……射影簇X上Fq^n点集X(Fq^n)恰好是自同态F^nx:X→χ的不动点集!”
“那怎么计算射影簇上的不动点集的数量呢?”程诺还未说完,米勒教授就忍不住问道。
程诺笑了笑,缓缓开口说道:“Lefschetz不动点定理!”
米勒:“Lefschetz不动点定理?”
程诺加重语气,“对,就是Lefschetz不动点定理!”
“设X是一个紧微分实流形,f:X→X是一个微分映射,f的一个不动点是指一个点x\in X使得f(x)=x.对于X的一个不动点x,微分df_{x}是切空间T_{x}X的一个线性变换.称一个不动点x是非退化的,如果1-df(x)是可逆的.这个条件是说这个不动点具有‘重数1’!”
程诺几乎是不假思索的说出这段话。
“是这样啊,刚才我还真的一时没有反应过来!”那边传来米勒恍然的声音。
伯恩教授也接着开口说道,“我的切入点也和汤姆先生的观点差不多。利用同调群在拓扑中的基本性质,通过构建一个光滑代数射影簇,运用不动点集进行切入。”
接着,伯恩教授又把他的想法给程诺三人讲了一下。
大同小异。
除了在一些具体的细节上有些分不清优劣的区别外,大体的内容是相同的。
米勒教授是主攻拓扑学的,虽然对几何内容的了解比不上其余三人,但他作为拓扑学领域小有名气的青年数学家,对拓扑学的同调群自然是了解颇深。
但即便是他,在经过程诺的解释后,也是对这个方案提不出任何瑕疵。
哈奇教授也没有异议。
伯恩当即拍板,“既然如此,那就按照我和汤姆的这个来。至于那些不同的细节,到时候看谁的方案运算过程简单一些,采用谁的就行。”