第553页(1 / 2)

万能数据 鸿尘逍遥 1055 字 8个月前

二号队友深以为然的点点头,“数论这方面我并不是很擅长,可能会稍微麻烦点,但丹顿师兄主攻的是数论方向,这个问题应该信手拈来,程诺你呢?”

    “我?”程诺指了指自己,笑了一下,“我还好吧。”

    两人以为程诺并不擅长这类的问题,也就笑了笑,没有再继续讨论下去。

    上一局是程诺为他们剑桥大学挣到了脸面,那这次他们两个带程诺躺一局又有何妨。

    素数是否有无穷多个?

    这个问题乍听会觉得很荒谬。

    素数的定义是除去1和本身之外不存在其他因子的大于1的正整数,单纯从这个定义上来看,素数没什么先验的理由必须有无穷多个。

    但数学是一门很将道理的学科,必须要严谨的证明过程将“素数有无穷多个”这个命题证明出来。

    第四百四十四章 素数无限的证法

    关于“素数有无穷多个”的证明方法,目前最被认可的是数学家欧里几得在《几何原本》第9卷的第20个命题列出的证明过程。

    因此,这一命题也因此被称为了“欧几里德定理”。

    欧里几得的证法很简单,也很平凡,因此得以进入初等数学的课堂。

    他首先是假设素数是有限的,假设素数只有有限的n个,最大的一个素数是p。

    然后设q为所有素数之积加上1,那么,q=(2×3×5×…×p)+1不是素数,那么,q可以被2、3、…、p中的数整除。

    而q被这2、3、…、p中任意一个整除都会余1,与之矛盾。所以,素数是无限的。

    这个古老而又简便的证明法,即便时隔两千多年,都无法否认它的强大。

    ……

    “我觉得既然是比数量的话,那我们最好就在欧里几得的证明法的基础上进行变种,这样浪费的时间估计会少一点。”

    “嗯,我也这么觉得,毕竟我们只有半个小时的时间,我们三个至少每个人要想出来一个变种才有获胜的希望。”

    “不不不,三个绝对不够,其他学校也不都是一些无能之辈,我觉得要争前三的话,起码五个更稳妥!我们最多用二十分钟的时间各自想出一个变种,然后我们三人最后十分钟再合力看看还有没有什么其他的思路。”

    “好吧,那就这样。”

    两位队友在激烈的讨论着。在达成了一致意见后,便齐齐扭头看向程诺。

    “程诺,你没问题吧?”虽然时间紧迫,但两人还是想问一下程诺的意见。

    “呃……有一句话,我不知道当讲不当讲。”程诺挠挠头道。